3.210 \(\int \frac {(d+e x^2) (a+b x^2+c x^4)^{3/2}}{\sqrt {f x}} \, dx\)

Optimal. Leaf size=297 \[ \frac {2 a d \sqrt {f x} \sqrt {a+b x^2+c x^4} F_1\left (\frac {1}{4};-\frac {3}{2},-\frac {3}{2};\frac {5}{4};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{f \sqrt {\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^2}{\sqrt {b^2-4 a c}+b}+1}}+\frac {2 a e (f x)^{5/2} \sqrt {a+b x^2+c x^4} F_1\left (\frac {5}{4};-\frac {3}{2},-\frac {3}{2};\frac {9}{4};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{5 f^3 \sqrt {\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^2}{\sqrt {b^2-4 a c}+b}+1}} \]

[Out]

2/5*a*e*(f*x)^(5/2)*AppellF1(5/4,-3/2,-3/2,9/4,-2*c*x^2/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^2/(b+(-4*a*c+b^2)^(1/2))
)*(c*x^4+b*x^2+a)^(1/2)/f^3/(1+2*c*x^2/(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(1+2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))^(1/2)+
2*a*d*AppellF1(1/4,-3/2,-3/2,5/4,-2*c*x^2/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))*(f*x)^(1/2)*
(c*x^4+b*x^2+a)^(1/2)/f/(1+2*c*x^2/(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(1+2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.35, antiderivative size = 297, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {1335, 1141, 510} \[ \frac {2 a d \sqrt {f x} \sqrt {a+b x^2+c x^4} F_1\left (\frac {1}{4};-\frac {3}{2},-\frac {3}{2};\frac {5}{4};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{f \sqrt {\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^2}{\sqrt {b^2-4 a c}+b}+1}}+\frac {2 a e (f x)^{5/2} \sqrt {a+b x^2+c x^4} F_1\left (\frac {5}{4};-\frac {3}{2},-\frac {3}{2};\frac {9}{4};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{5 f^3 \sqrt {\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^2}{\sqrt {b^2-4 a c}+b}+1}} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x^2)*(a + b*x^2 + c*x^4)^(3/2))/Sqrt[f*x],x]

[Out]

(2*a*d*Sqrt[f*x]*Sqrt[a + b*x^2 + c*x^4]*AppellF1[1/4, -3/2, -3/2, 5/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-
2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(f*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sqrt
[b^2 - 4*a*c])]) + (2*a*e*(f*x)^(5/2)*Sqrt[a + b*x^2 + c*x^4]*AppellF1[5/4, -3/2, -3/2, 9/4, (-2*c*x^2)/(b - S
qrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(5*f^3*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqr
t[1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1141

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^2 +
 c*x^4)^FracPart[p])/((1 + (2*c*x^2)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^2)/(b - Rt[b^2 - 4*a*c,
 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c
]))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x]

Rule 1335

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> In
t[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p, q}, x]
 && NeQ[b^2 - 4*a*c, 0] && (IGtQ[p, 0] || IGtQ[q, 0] || IntegersQ[m, q])

Rubi steps

\begin {align*} \int \frac {\left (d+e x^2\right ) \left (a+b x^2+c x^4\right )^{3/2}}{\sqrt {f x}} \, dx &=\int \left (\frac {d \left (a+b x^2+c x^4\right )^{3/2}}{\sqrt {f x}}+\frac {e (f x)^{3/2} \left (a+b x^2+c x^4\right )^{3/2}}{f^2}\right ) \, dx\\ &=d \int \frac {\left (a+b x^2+c x^4\right )^{3/2}}{\sqrt {f x}} \, dx+\frac {e \int (f x)^{3/2} \left (a+b x^2+c x^4\right )^{3/2} \, dx}{f^2}\\ &=\frac {\left (a d \sqrt {a+b x^2+c x^4}\right ) \int \frac {\left (1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}\right )^{3/2} \left (1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )^{3/2}}{\sqrt {f x}} \, dx}{\sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}}+\frac {\left (a e \sqrt {a+b x^2+c x^4}\right ) \int (f x)^{3/2} \left (1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}\right )^{3/2} \left (1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )^{3/2} \, dx}{f^2 \sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}}\\ &=\frac {2 a d \sqrt {f x} \sqrt {a+b x^2+c x^4} F_1\left (\frac {1}{4};-\frac {3}{2},-\frac {3}{2};\frac {5}{4};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{f \sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}}+\frac {2 a e (f x)^{5/2} \sqrt {a+b x^2+c x^4} F_1\left (\frac {5}{4};-\frac {3}{2},-\frac {3}{2};\frac {9}{4};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{5 f^3 \sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {\$Aborted} \]

Verification is Not applicable to the result.

[In]

Integrate[((d + e*x^2)*(a + b*x^2 + c*x^4)^(3/2))/Sqrt[f*x],x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [F]  time = 0.81, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (c e x^{6} + {\left (c d + b e\right )} x^{4} + {\left (b d + a e\right )} x^{2} + a d\right )} \sqrt {c x^{4} + b x^{2} + a} \sqrt {f x}}{f x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)*(c*x^4+b*x^2+a)^(3/2)/(f*x)^(1/2),x, algorithm="fricas")

[Out]

integral((c*e*x^6 + (c*d + b*e)*x^4 + (b*d + a*e)*x^2 + a*d)*sqrt(c*x^4 + b*x^2 + a)*sqrt(f*x)/(f*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}} {\left (e x^{2} + d\right )}}{\sqrt {f x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)*(c*x^4+b*x^2+a)^(3/2)/(f*x)^(1/2),x, algorithm="giac")

[Out]

integrate((c*x^4 + b*x^2 + a)^(3/2)*(e*x^2 + d)/sqrt(f*x), x)

________________________________________________________________________________________

maple [F]  time = 0.06, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \,x^{2}+d \right ) \left (c \,x^{4}+b \,x^{2}+a \right )^{\frac {3}{2}}}{\sqrt {f x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)*(c*x^4+b*x^2+a)^(3/2)/(f*x)^(1/2),x)

[Out]

int((e*x^2+d)*(c*x^4+b*x^2+a)^(3/2)/(f*x)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}} {\left (e x^{2} + d\right )}}{\sqrt {f x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)*(c*x^4+b*x^2+a)^(3/2)/(f*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((c*x^4 + b*x^2 + a)^(3/2)*(e*x^2 + d)/sqrt(f*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (e\,x^2+d\right )\,{\left (c\,x^4+b\,x^2+a\right )}^{3/2}}{\sqrt {f\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d + e*x^2)*(a + b*x^2 + c*x^4)^(3/2))/(f*x)^(1/2),x)

[Out]

int(((d + e*x^2)*(a + b*x^2 + c*x^4)^(3/2))/(f*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d + e x^{2}\right ) \left (a + b x^{2} + c x^{4}\right )^{\frac {3}{2}}}{\sqrt {f x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)*(c*x**4+b*x**2+a)**(3/2)/(f*x)**(1/2),x)

[Out]

Integral((d + e*x**2)*(a + b*x**2 + c*x**4)**(3/2)/sqrt(f*x), x)

________________________________________________________________________________________